Homolytic 1,6-Transfer of the Bu₃Sn Group from Allylic Carbon to Alkoxy Oxygen

Sunggak Kim* and Kwang Min Lim

Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea

A novel 1,6-Bu₃Sn group transfer from allylic carbon to alkoxy oxygen is observed in radical reactions of vinyl oxetanes; it is greatly favoured over 1,5- and 1,6-hydrogen atom transfer.

1,5- and 1,6-hydrogen atom transfers are the most studied paths among radical rearrangements¹ and they have useful synthetic applications.² Radical rearrangement of Group 4 elements involving R₃Si, R₃Ge and R₃Sn group transfers has not been actively investigated,³ although the reaction should be feasible because of the release in bond energy accompanying rearrangement. Davies and Tse have presented evidence for 1,5-Bu₃Sn group transfer from enoxy oxygen to alkoxy oxygen.⁴ Recently, we have reported novel radical cyclizations utilizing 1,5-Bu₃Sn group transfers from allylic carbon to alkoxy oxygen⁵ and from enoxy oxygen to alkoxy oxygen.⁶ In connection with our continuing interest in radical rearrangements, we turned our attention to 1,6-Bu₃Sn group transfer reactions. The homolytic bond dissociation energy for the C-H bond is roughly 29 kcal mol⁻¹ (1 cal = 4.184 J) greater than for the C-Sn bond and it is estimated that the 1,6-Bu₃Sn transfer in 2 would be thermodynamically favoured by ca. 39 kcal mol⁻¹ whereas 1,5- and 1,6-hydrogen transfer would be favoured by ca. 19 kcal mol-1.7

To explore the interesting possibilities of 1,6-Bu₃Sn transfer and competition between 1,5-hydrogen, 1,6-hydrogen and 1,6-Bu₃Sn transfer, the vinyl oxetanes 1 were prepared by routine operations. Reaction of 1 (n = 1 and 2) with Bu₃SnH in the presence of azoisobutyronitrile (AIBN) in refluxing benzene was not successful, yielding a recovery of ca. 50% of starting material even after 24 h. When the reaction was carried out in refluxing xylene using di-tert-butyl peroxide (DTBP) as an initiator, the reaction proceeded smoothly. As shown in Scheme 1, in order to differentiate between the products 5 and 6, resulting from 1,6-hydrogen transfer and direct quenching, the remaining reactions were carried out with Bu_3SnD . Reaction of 1 (0.05 mol dm⁻³ in xylene) with Bu₃SnD (1.2 equiv.) and DTBP (0.1 equiv.) in xylene at 140 °C for 16 h afforded an inseparable mixture of 3 and 4 as major products. Also produced in this reaction were 5, resulting from 1,6-hydrogen transfer of 2, and the direct quenching product 6. The ratio of 3a, 3b and 4 was determined by ¹H

NMR analysis in the olefinic region. Compound 4 was independently prepared in 48% yield by reaction of 1 (n = 1) with diphenyl disulfide (0.3 equiv.) and AIBN (0.1 equiv.) in refluxing benzene for 4 h and 3b was also prepared by

J. CHEM. SOC., CHEM. COMMUN., 1993

Table 1 Reactions of compounds 1 with tri-n-butyltin deuteride

Substrate	Yield (%) ^a	Product ratio				
		$\overline{\mathbf{3a}+\mathbf{3b}(\mathbf{3a/3b})^b}$	4 ^b	5 ^c	6 c	
n =1	72	75 (88/12)	13	8	4	
<i>n</i> =2	65	80 (75/25)	8	9	3	
<i>n</i> =3	61	88 (92/8)	3	6	3	

^a Isolated yields. ^b The ratio was determined for a mixture of **3a**, **3b** and **4** by ¹H NMR. ^c The amount was determined by ¹H NMR, after destannylation of a mixture of **5** and **6**.

treatment of 6 with DCl. Furthermore, the ratio of 5 and 6 was similarly determined by ¹H NMR analysis of destannylated products (3b, 7). Some experimental results are summarized in Table 1; several features are noteworthy. First, 1,6-Bu₃Sn transfer from carbon to oxygen is favoured over 1,6-hydrogen transfer by *ca.* 10 to 1. Secondly, 1,6-Bu₃Sn transfer is also greatly preferred over 1,5-hydrogen transfer. On the basis of the reported rate constant for 1,5-H transfer of *ca.* 10^8 s^{-1} ,8 the rate constant for 1,6-Bu₃Sn transfer in this study is *ca.* 1:1; the ratio of 1,5- to 1,6-hydrogen transfer in this study is *ca.* 1:1; the ratio of 1,5- to 1,6-hydrogen transfer from carbon to oxygen is *ca.* $10:1.^9$ This striking result might be explained by stabilization due to the α -stannyl group or anchimeric assistance.¹⁰ We thank the Organic Chemistry Research Center (KOSEF) for financial support of this work.

Received, 20th April 1993; Com. 3/02292G

References

- 1 A. L. J. Beckwith and K. U. Ingold, in *Rearrangement in Ground* and Excited States, ed. P. de Mayo, Academic Press, New York, 1980; vol. I, p. 161; R. Kh. Freidlina and A. B. Terent'ev, Adv. Free Radical Chem., 1980, 6, 1.
- 2 For recent examples: A. D. Borthwick, S. Caddick and P. J. Parsons, *Tetrahedron Lett.*, 1990, 33, 6911; V. H. Rawal, R. C. Newton and V. Krishnamurthy, J. Org. Chem., 1990, 55, 5181; D. P. Curran, K. V. Somayajula and H. Yu, *Tetrahedron Lett.*, 1992, 35, 2295.
- 3 C. G. Pitt and M. S. Fowler, J. Am. Chem. Soc., 1968, 90, 1928; R. West and P. Boudjouk, J. Am. Chem. Soc., 1973, 95, 3983; A. Alberti and A. Hudson, Chem. Phys. Lett., 1977, 48, 331; Y.-M. Tsai and C. D. Cherng, Tetrahedron Lett., 1991, 32, 3515.
- 4 A. G. Davies and M.-W. Tse, J. Organomet. Chem., 1978, 155, 25.
- 5 S. Kim, S. Lee and J. S. Koh, J. Am. Chem. Soc., 1991, 113, 5106.
- 6 S. Kim and J. S. Koh, J. Chem. Soc., Chem. Commun., 1992, 1378.
- 7 E. R. Laird and W. L. Jorgensen, J. Org. Chem., 1990, 55, 9.
- 8 B. C. Gilbert, R. G. G. Holmes, H. A. Laue and R. O. C. Norman, J. Chem. Soc., Perkin Trans. 2, 1976, 1047.
- 9 J. Y. Nedelec and D. Lefort, *Tetrahedron*, 1975, **31**, 411; J. Y. Nedelec, M. Gruselle, A. Triki and D. Lefort, *Tetrahedron*, 1977, **33**, 39.
- 10 R. A. Jackson, K. U. Ingold, D. Griller and A. S. Nazran, J. Am. Chem. Soc., 1985, 107, 208 and references cited therein.