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Homolytic 1,6=Transfer of the BusSn Group from Allylic Carbon to Alkoxy Oxygen 
Sunggak Kim* and Kwang Min Lim 
Department of Chemistry, Korea Advanced lnstitute of Science and Technology, Taejon 305-701, Korea 

A novel 1 ,6-Bu3Sn group transfer from allylic carbon to alkoxy oxygen is observed in radical reactions of vinyl oxetanes; 
it is greatly favoured over 1,5- and 1,6-hydrogen atom transfer. 

1,s- and 1,6-hydrogen atom transfers are the most studied 
paths among radical rearrangements1 and they have useful 
synthetic applications.2 Radical rearrangement of Group 4 
elements involving R$i, R3Ge and R3Sn group transfers has 
not been actively investigated,3 although the reaction should 
be feasible because of the release in bond energy accompany- 
ing rearrangement. Davies and Tse have presented evidence 
for 1,5-Bu3Sn group transfer from enoxy oxygen to alkoxy 
oxygen.4 Recently, we have reported novel radical cycliza- 
tions utilizing 1,5-Bu3Sn group transfers from allylic carbon to 
alkoxy oxygen5 and from enoxy oxygen to alkoxy oxygen.6 In 
connection with our continuing interest in radical rearrange- 
ments, we turned our attention to 1,6-Bu3Sn group transfer 
reactions. The homolytic bond dissociation energy for the 
C-H bond is roughly 29 kcal mol-l (1 cal = 4.184 J) greater 
than for the C-Sn bond and it is estimated that the 1,6-Bu3Sn 
transfer in 2 would be thermodynamically favoured by ca. 39 
kcal mol-1 whereas 1,5- and 1,6-hydrogen transfer would be 
favoured by ca. 19 kcal mol-1.7 

To explore the interesting possibilities of 1 ,6-Bu3Sn transfer 
and competition between 1,5-hydrogen, 1,6-hydrogen and 
1,6-Bu3Sn transfer, the vinyl oxetanes 1 were prepared by 
routine operations. Reaction of 1 (n = 1 and 2) with Bu3SnH 
in the presence of azoisobutyronitrile (AIBN) in refluxing 
benzene was not successful, yielding a recovery of ca. 50% of 
starting material even after 24 h. When the reaction was 
carried out in refluxing xylene using di-tert-butyl peroxide 
(DTBP) as an initiator, the reaction proceeded smoothly. As 
shown in Scheme 1, in order to differentiate between the 
products 5 and 6, resulting from 1,6-hydrogen transfer and 
direct quenching, the remaining reactions were carried out 
with Bu3SnD. Reaction of 1 (0.05 mol dm-3 in xylene) with 
Bu3SnD (1.2 equiv.) and DTBP (0.1 equiv.) in xylene at 140 
“C for 16 h afforded an inseparable mixture of 3 and 4 as major 
products. Also produced in this reaction were 5, resulting 
from 1,6-hydrogen transfer of 2, and the direct quenching 
product 6. The ratio of 3a, 3b and 4 was determined by lH 

NMR analysis in the olefinic region. Compound 4 was 
independently prepared in 48% yield by reaction of 1 (n = 1) 
with diphenyl disulfide (0.3 equiv.) and AIBN (0.1 equiv.) in 
refluxing benzene for 4 h and 3b was also prepared by 
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Table 1 Reactions of compounds 1 with tri-n-butyltin deuteride 

Product ratio 

Substrate Yield (%)" 3a + 3b (3d3b)b 4b 5 c  6 c  

n =1 72 75 (88/12) 13 8 4 
n =2  65 80 (75/25) 8 9  3 
n =3 61 88 (92/8) 3 6  3 

a Isolated yields. The ratio was determined for a mixture of 3a, 3b 
and 4 by 1H NMR. c The amount was determined by lH NMR, after 
destannylation of a mixture of 5 and 6. 

treatment of 6 with DCl, Furthermore, the ratio of 5 and 6 was 
similarly determined by 1H NMR analysis of destannylated 
products (3b, 7). Some experimental results are summarized 
in Table 1; several features are noteworthy. First, 1,6-Bu3Sn 
transfer from carbon to oxygen is favoured over 1,6-hydrogen 
transfer by ca. 10 to 1. Secondly, 1,6-Bu3Sn transfer is also 
greatly preferred over 1,5-hydrogen transfer. On the basis of 
the reported rate constant for 1,5-H transfer of ca. 108 s-1,8 
the rate constant for 1,6-Bu3Sn transfer should be ca. 109 s-1. 
Finally, the ratio of 1,5- to 1,6-hydrogen transfer in this study 
is ca. 1 : 1; the ratio of 1,5- to 1,6-hydrogen transfer from 
carbon to oxygen is ca. 10 : 1.9 This striking result might be 
explained by stabilization due to the a-stannyl group or 
anchimeric assistance.10 
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